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SUMMARY

The R&D program from the DOE Used Fuel Disposition Campaign (UFDC) has documented
key advances in coupled TherntdidrologicatMechanicalChemical (THMC) modeling of

clay to simulate its complex dynamic behavior in response to thermaldnathemical
feedbacksThese efforts have been harnessed to assess the isolation performance of heat
generating nuclear wasteadesp geological repository iolay/shale/argillaceous rock
formations This reportdescribeshe ongoingdisposal R&D effots on the advancement and
refinement of couple@HMC process model$ydrothermal experiments darrierclay
interactions, used fuelnd canister materidlegradationthermodynamic database development
andreactive transport modeling of the ndi@td under norisothermal conditionsThese play an
important role tolie evaluationof sacrificial zoness part othe EBSexposure to thermaly
driven chemical and transport processeermal inducement athemicalinteractionsat EBS
domainsenhances mineral dissolution/precipitation but gksoerate mineralogicakchangeghat
result inmineralH20 uptakefemoval(hydration/dehydration reactionsThese processes can
result involume changethatcanaffect the interfacébulk phaseporostiesand the mechanical
(stress) state of the bentonite barri€haracterization studies on bentonite barrier samples from
the FEBEXDP international activity have provided important insight on clay barrier
microstructures (e.g., microcracks) and intéoms at EBS interfacesEnhancements to the used
fuel degradation model outlines the need to include the effects of canister codusitre

strong influence oH> generation on the source term.

As in previous deliverables, this report is structuaedording to various national laboratory
contributions describing R&D activities applicablectayshale/argillite media. These activities
are summarized as follows:

1 Evaluation of Used Fuel Disposition in ClayBearing Rock: Reactive Transport
Modeling of the Near Field Environmenti SNL (Part I)

0 NonisothermallD reactivetransport modéhg of the EBSusing PFLOTRAN
simulation code

A The thermallydriven phase transformation reaction gypsynanhydrite
(hydration/dehydration), in addition to dissolutiomgipitation reactions,
is captured by the reactiteansport model even with a fast temperature
increase during the thermal pulse.

A GypsumA anhydritephase transformation can generate volume
differences of ~60% that could translate into poradsityeasesn the EBS
bulk regions and at interfaces

A As exemplified by the G&Qu-H20 system, pore solution chemistry and
temperature are key factors in determining the alteration mineral
assemblagd-or example, the formatiaof ettringitefrom cement
alteration ad reaction wittCa-SQs components in the pore solution.



o Internatbnal collaborations: FEBEXP chemicahnd micreCT characterization
work:

A Micro-CT imaging reveals the wide occurrence of microcracks in
bentoniteas a result oflehydration anghrinkag. Microcracks can
influence moisture transport and clay swelling.

A FEBEX-DP samples in contact with the heater surface appears to produce
unidentified Atsilicates with detectable amounts of K and FRather
work is neededn the characterization of these phases.

A The application of scanning characterization techniques such as micro
XRF and SEM/EDS/BSEI to the compositional characterization of the
shotcreté bentonite interface suggests thaich of the reaction appears
to be confined to the shotcrete phase and little or no alteration was
experienced by bentonite

1 Argillite Disposal R&D at LBNL (Part II)
0 International Collaboration Activities: THM and Heater Test Modeling

A Succesful completion oDECOVALEX-2015 modelingassociated with
the Mont Terri HEE experiment and Horonobe EBS experiment

A Analysis offield data from the largest ongoing ungierund heater test in
the world:Mont Terri FE experiment

A Improvement of the implementation and efficiency of the Barcelona
Expansive Model (BExM) in TOUGHFLAC as well as the interpretative
modeling of field datérom URL heater experiments.

o Investigation of the Impacts of High Temperature Limits with THMC modeling

A THMC modelutilize dual structure Barcelona Expansive Clay Mode
(BExM) to link mechanical process with chemistry, allowing us to
simultaneously incorporate the effects of exchangeable cations, ionic
strength of pore water and abundance of swelling clay on the swelling
stress of bentonite.

A Corrosion of steel canistevas considered in the chemical model to
evaluate whether the irdmentonite interaction would aggravate the
negative impact on swelling stress through the formation of Fe bearing
clay minerals.

A The chemical changes as a whole reduce both total stres§entde/net
stress in the bentonite buffer except the positions near the confinement
rocks in the fihigh TO0 cases.

o Evolution of Bentonite iFEBEX-DP CoupledTHMC Modeling

A THMC model outperformed the THC model in terms of matching
measured THM data. Peeability and porosity changes due to
mechanical process (swelling) were the key to matching all the THM data.
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A The THMC model using complex double structure BExM (THREXM)
did not outperform the THMC model using linear swelling model
(THMC-LS) in terms ofmatching the measured data.

A THMC models successfully matched the THM datayever they failed
to match the measured concentration profilearfservative species
(chloride)

A A series of synchrotron-Xay microCT (SXRe CT) exami nati on of the
microstructue of bentonite samples from FEBED® project at the
Grimsel siteSXR-e CT i magi ng was cmhbecfiad febdb a sampl e
(i.e., as receiveddndheated stateHeating completely modified the
microstructure of the material, generating a pervasate/ork of
fractures.

o Discrete Fracture Network (DFN) Approach for THM Damage Modeling in
Argillaceous Rock

A An effective coupling between the TOUGH2 and the RBSN approach has
been implemented and applied to hydraulic fracturing simulations

A Continued wok on modeling damage and deformation in anisotropic rock
and around tunnels, but have also made substantial effort in simulation of
fluid driven fracture propagation.

A Current TOUGHRBSNmodel is capable ahodeling tightly coupled HM
processes and the RBSigproach for mechanical anisotropy in elastic and
fracture responses.

0 Experimental studies of Engineered Barrier Systems conducted &ANL
(Part 111)

A Experimental work focu®palinus wall rock interactions with EBS
backfill, copper alteration and coriios rates steelbentonite interface
phase reactions

A Opalinus Clay upon heating develops wairakite along cracks and edges.
Mine run bentonite contains clinoptilolite, and transforms to analcime at
higher temperature, releasing both 5#0d water

A Pit corrosion is the driving force in copper degradat@opper reacts with
H2S (ag,g) to produce chalcocite and covellite. At latter times in the
reaction pathwayCl may combine with copper to produce atacamite

A Systematic measurements (N>850) of commerosion cross sections
haveestimatectorrosion reaction rates at experimental temperatures and
pressuresAt 6 weels duration, corrosion rates ranged from 0.12 to 0.39
micron/day. However, in the 6 mostexperiment, the corrosion rate
dropped by anrder of magnitude, to 0.024 micron/day. We believe that
complete coverage by the reaction product chalcocite pacifies the
corrosion reaction.
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A The interface between bentonite and steel develops a well characterized
Fe-saponite farticularlyat 300°C), thagrows perpendicular to the steel
surface Pit corrosion of low carbon steel was common and resulted in a
corrosion rate of 1083 pm/yr.

Update to Thermodynamic Database Development and Sorption Database
Integration i LLNL & SNL (Part IV)

0 Progress on thassessment of thermodynamic and sorption data

A A manuscript describinthe evaluation of a thermodynamic daiaing
concept of Alinksodo to the cthasmi cal el ements in their
been finally resubmitted tGeochimica et Cosmochimica Acttier
responding to reviewer commentbhis work has been carried in
collaborationbetween LLNL andSNL.

A A second manuscript, fAChemical Thermodynamic Dat a. I
SUPCRT92 and Similar Codes: Thermochemical Properties in Relation to
Equati ons mdenthBubmittet@Comptsrs & Geosciences

A Thecoupling of thePHREEQCcomputer codevith the parameter
estimation / optimization softwaREST was tested to (V1) -quartz
sorptiondatasetResulting fits are comparable with previous LLNL work
efforts therefore providing robust path forward for surface complexation
database development

A OngoingNEA TDB project activitiesncludeupcoming releasesnd/or
ongoing review activitiesf chemicathermodynamialata Ancillary data
review, Fei Part lireview, Mo review, Statef-the-Art report(SOAR) on
cements, SOAR Pitzer, Update Actinides review.

Fuel Matrix Degradation Model: Canister Corrosion and the Effect of Hydrogen on
Used Fuel Degradation Ratei ANL (Part V)

A Formulated, coded and tested an electrochemical steel corrosion module
that couples irpackage steelorrosion with fuel degradation through the
common solution.

A Updated and optimized FMDM to improve the efficiency of integration
with the GDSA PA model

A Performed scoping electrochemical tests to build confidence in modeling
the R effect mechanism whichas a significanimpacton source term
calculations when ipackage steel components are corroding
simultaneously with used fuel
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1

Addition of Bromide to Radiolysis Model Formulation for Integration with the
Mixed Potential Modeli PNNL (Part VI)

A Updateon the radiolysis model for calculating radiolytic generation of
H20, with known concentration of 1O, and Br.

A The radiolysis model is capable of accounting for the effects of bromide
and the dependence blh. Comparisons between the full and the
empirical radiolysis models were conducted to evalddterences
between thesmodelrepresentatio

Overall Future Perspectives:

1

Expand integrationf process modekork with GDSA PAfor case scenarios relevant to
disposal in argillite in the presence of hgaherating waste.

Expand norisothermal reactive transport modeling of rééeld chemical interactions to
temperatures relevant to disposal concepts of interest in the assesstnemhaf limits
and the etent ofsacrificial zonesThis includes experimental and modeling efforts
contributing to the elucidation of key processes affecting the fate and performance of
barrier materials at elevated temperatures.

Continue évelopnentand testingf coupledprocessmodel representations of neféld
chemical interactionsnechanicaland transporin barrier materials. Programmatic
engagements and collaborations with international R&D activities (e.g., URL heater
tests) in repository sciences are an integral gfahese efforts.

Development of a astecanisterdegradation plus other materials exerting important
effects on EBS interface$his activity will leverage on the aboweentioned
international collaborations particularly on the aspect of tbehtmite interactions
(e.g., FEBEXDP) and sample characterization studies.

Expand oupling of source term modeg(sadiolysis and-MDM) that includethe effects
of waste packageegradatiorand the presen@xueous species (e.g.,)BrThis isguided
by thefurther integratiorof these modslwith GDSA-PA.
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Evaluation of Used Fuel Disposition in Clay-Bearing Rock:

Reactive Transport and Barrier Interactions in the Near Field
Environment (Part I)



1. Evaluation of Used Fuel Disposition irClay-Bearing Rock Non-Isothermal Reactive
Transport Modeling of the Near Field Environment

1.1 Introduction

The ideal isolation qualities afay/shale/argillaceous rock formatiosisch asow permeability
geochemically reducedrack/fracture selhealing sorbtive mineralogy, andide geological
occurrencenakes thesatargetmediafor hostingdeep geological disposal of nuclear waste
(Bianchi et al., 2013, 2014; Gonzales and Johnson, 1984; Hansen et al., 2010; Mazurek et al.,
2003; Neuzil, 2013; Schurt977) TheR&D program from thédOE Used Fuel Disposition
Campaign (UFDChas documenteddvances icoupled ThermaHydrologicatMechanical
Chemical (THMC) modelingf clayto simulate itcomplexdynamic behavioin response to
thermal and hydrochemictdedbackgJové Colon et al., 2014, 2015 and references therein)
These modeling efforts leverage on tiide range of investigations on clay barrier materials and
argillaceous rocks in particular lynumber ofnternational repository science prograrag(,
URLSs) Hansen et al., 2010)The DOE Used Fuel Disposition CampaiddRDC) R&D
programcomprehends a suite of R&D topics aimed at model developmneiexperimental

work (Jové Coloén et al., 2014; Rutqvist et al. 2014, Zheng et al. 2Uhé)objectie is to build
robust process models in support of kfgtelity performance assessment (PA) calculations of
disposal concepts for nuclear waste. Some of the key itesupport of the safety assessment
for disposal irtheargillite work package are:

1 Experimentabndmodelingstudies on hydrothermal interactions in clay
1 Coupled ThermaHydrologicatMechanicalChemical (THMC) modeling
Experiments and model development afpgion and diffusiorontoclay.

Assessment dBNFand canistecorrosion

== = =

Thermodynamidatabase development azhlysis of fluidmineral interactionsn
barrier materials

An initial assessment ofraference case for disposal in argilisegiven byMariner et al. (2015)
as part of the genie disposal system analygerformance assessme@fSA-PA). The overall
geological characteristics angpository dimensions along with thdoptedstratigraphic
sequences bounding the disposalsin@wvn in Figure 1 The subsurface repository layout
consists of horizontal dispdsgalleries emplaced ertd-end with waste packages in drifts lined
with cement ad/or metal support structuréddriner et al.2015). Numerical simulatioria
that workwere conducted using PFLOTRAN with a 3D structured grid havamigblespacings.
The DAKOTA software toolkit is used foampling, sensitivity analysis, and uncertainty
quantification Although this is an important first step in the direction of building up a GB8A
evaluation of disposal in argillaceous media, geochemical interatti@naffect radionuclide
chemistry and transport, antineralogical alteration dfarrier materialeading to changes in
porosity/permeabilitypropertiesstill need to be evaluatedhe following section describes a 1D
reactivetransport modein PFLOTRANfocusing on barrier material interactions in the presence
of SNF heating therefore producinghermalpulse(see Greenberg and Wen, 2013)cha
thermal perturbation can last up to hundrgeisrstherefore influencindarrier chemical
interactions as weas moisture transport in the ndald.
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Sediments
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| Sediments

Figure 1. Schematic representation of the stratigraphyegusitoryfootprint dimensions considered for
the reference case for disposal in clay/shale/argillite rock (Mariner et al. 2015).

2. Reactive Transport in the Near-Field Environment

Jové Colon et al. (20)8lescribed a reactivieansporimodel to assess geochemical changes of
pore solutions and mineral components plus variations in porosity. The objective of this
simulation efforts is the evaluatiarfi sacrificial zonesn theEBS A sacrificial zonerefers to

fi b a rnraterialithat has wlergone extensive geochemical alteration as a result of exposure to
high temperatur@sbut not necessarily entails tbestruction or compromise of the barrier
isolation capacity atrey specificlocation of the EBRJové Colon et al., 2@). Understanding

the effects (longand shorterm) of heterogeneous chemical reactions (dissolutiaifjitation),
phase transformation phenomena, and the coupling of these with thermal effects are key to the
overall barrier isolation performance in the néald environment. In particular, chemical

effects are expected to be intensified at EBS intesfaetweerissimilarbarrier materials

inducing changes ithe EBS porous propertieyhemaingoal of the current stage of this work

is to expand th&D reactivetransportmodel b include the thermal perturbation caused by-heat
generating waste along with chemical changes in thefigddr Within this objective, the goal is

to also have a stable reactitvansport model with a comprehensive geochemical construct
operating underugh conditiongo evaluate key interaction in the EBS.

As summarizedn previous reportse(g.,Jové Coldn et gl2014, studies on EBS materials and
their performance as a resultioteractions with fluids have beeenductedo evaluate cement
clay interactiongDauzeres et al., 201Gaboreau et al., 2013anchez et 32006 Savage,
201Z% Trotignon et al., 2006 reactivetransport siralations of multibarrier EBS concepts
(Kosakowski and Berner, 201Blarty et al., 2010Marty et al., 2009MontesH et al., 200}
and characterizatioglies of reactivaiffusion and sorption in clapearing barrier materials
(Gonzalez Sanchez et al., 2008seph et al., 201doseph et al., 2018ozai et al., 2001
Kozaki et al., 2001Van Loon et al., 2003The UFD international collaboration with the
FEBEX-DP project has provide the unique opportunity to study shotcrete / bentogiteey
samples from this lonterm heater testnd will be briefly discussed in a later sect{davé
Colon 2016).



Theenhanced dissolutioof clay and silicates generalwhen exposed thighly alkalinepore
solutiors as a result ofementclay interactionpresents a potential issue fepositorysealing
performancéBerner ¢al., 2013 Gaboreau et al., 201Rosakowski and Berner, 20,130ler,
2012 Soler and Mader, 20)0The expectedgrosityenhancement and reduction (eppre
clogging)as a result ofmineral dissolution and precipitatioespectivelyhave beervaluated

in reactivetransport modeling efforts including benchmark test cases for computer code inter
comparisongMarty et al., 2015Xie et al., 2015 Moreover,EBS interfaces such as those
defined by clay barriers and interactions with metal (steel) overpack/caméestdseacritical to

the assessment waste package breadivmmy their close proximity to the SNF source and their
importance to barrier material degradat{@davé Colén et al., 2013ové Colén et al., 2014

Marty et al., 2010Wilson et al., 201p

The maingoal of this reactivetransport work is tduild a norisothermallD model

representation ahultilayered EE5 capturing theeomplexity ofgeochemical interactions
betweervarious types obarriermaterialsand pore solutionwith diffusive transport A thermal
source defined by the hegénerating waste is set to produce peak temperatures above 100°C on
the canister surfacelhe chemical aspect of the model is to comprehensively capture the mineral
compositionoke ac h b aror ioerr zfol nedlegaore salutoh thenasthe code
PFLOTRAN has been selectedsthe simulation platform for GDSRA in theevaluationof
disposakoncepts (Marineet al. 2015)The 1D reactivetransport modeih PFLOTRAN

exploits high performance computing (HPCpahilities to eassimulationtimes thus allowing

for rapid analysis of key inpatind output variable€ode run stability was an issue due to the

rapid rise in temperatures and the reaetramsport part of the simulation.

2.1 1D Reactive-Transport Model Description of the EBS

The PFLOTRAN simulation tool is an open source, stéthe-art massively parallel subsurface
flow and reactive transport code with extensive modeling capabilities of THC processes
(Lichtner et al., 2018 A major feature of PFLOTRAN is its performance on massively parallel
or high performance computing (HPC) platforms where efficient scalabilityniezémportant

for large coupled process problems that otherwise could present a computational limitation in
other simulation codes. Parallelization is achieved through domain decomposition using the
PETSc (Portable Extensible Toolkit for Scientific Congtigin) libraries.Lichtner et al. (2018
provides details on PFLOTRAN simulation capabilities, readti@asport formulations, and
geochemical treatment of na@ratfluid interactions.

The 1D simulation case isimilarto that described byové Colon et al. (2&) asdepicted in
Figure2 but using the TH mode in PFLOTRANsome of the differences are inrpssolution
chemistry and geochemical constraifitse 1D structured grid has a cylindrical symmetry with
1000 grid cells in the horizontal direction covering a to&srfield domain of 13 meters. The
dimensional characteristics of each zagled givenin Figure2) represent barrier thicknesses for
the EBS concept proposed for the argillite reference cakavénColdn et al. (20)4All zones

are assumed to be fully saturateith a heating zone defined at the canister surfdedlel list {Commented [3CF1];

chemistries

Check tables to match current water

some of the thermal and transport properties of each zone. Pabidd providethe mineral
volume fractions and initial pore solution chemical composition, respectively, for each barrier
material zone.Threetypes of initial pore water chemistries for ttement linerclay barrier and
clay-rock zones were considered: iute alkaline pH water(cement liner)(b) AFEBEX-l i k e 0
pore watersdescribed by Fernandez et @001, 2004 (inner and outerclay), and (c)lay-
rock pore water based on the work by Turrero et al. (2@8he minor changes to the water
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chemistry were coldered to evaluate issues with code run stability during the hedfimeg.
H4SiO4(aq) concentration in the inner clay zone is assumed to be in equilibrium with quartz
given that 14% volume fraction of this mineral is present in this zone. The FEBEX giare w
composition is considered nominal for bentonite pore waters reported in the literature. The clay
rock pore water chemistry is based on the workwfero et al. (2006for Opalinus Clay. Pore

water compositions in the cement zone are mainly controlled by equilibria with resgieet to
calcite aggregate drthe presence of CSH(1.6) and portlandite plus other cementitous phases.
Although uraninite as a waste form source term is part of the EBS solid phase assemblage, the
current simulations do not consider the constibutions of this phase to the schaiistry.

Future simulations will probe waste form and canister material interactions.

Canister material is currently represented in the miogé&le metalsimilar to other reactive
transport studies (Marty et al. 2010; Wilson et al. 2015). Howeveg #ne differences in the
treatment of steel corrosion usually represented by an anaerobic corrosion reaction given by
(Marty et al. 2010; Wilson &tl., 2015):

Fe + 2H0 = Fe™* + Hz(g) + 20H

A similar reaction i s aednahe THERMODDEM t he fAFe(el ement) o phas
thermodynamic database representing the steel material in this work:

Fe + 2H' + 1/20paq) = F€* + H0

As expected, the above reaction results in an increase in pH dideoastimptiorwhereHz(g)
is controlled by the equilibrieith other relevant species such aga@), Q(g), and H(aq). The
current simulations show large reactivity, as expected, avitharp increase in pHht this
moment, the reaction product for steel corrosion considered in the PFLOTRAN reactive
transportsimulations is magnetite, goethite, and berthier@iter phases likeronstedtitealong
with berthierinehave been consideréa investigate the predominant alteration phase
assemblagbut resulting in small precipitated volume fractiofRsture work wil focus on other
Fe-bearingphasegoxides and silicates), however, lack of thermodynamic data at elevated
temperatrures may be an obstdolethis assessmenGiven the importance of these interactions
to waste package degradation, future work letk at this issue in more detail to advance an
adequate set of reaction products that include Fehgayoxides and Fbearing Alsilicates
(e.qg., Feclays). For example, the hydrothermal clay/stainftes| experiments conducted by
Cheshire et al. (201én preparatior) described the formation of a chrom{feeCrO4)
passivation layer along with the minor formation of pentlandite (Nigeind millerite (NiS).
The presence of theseb®aring phases indicates the strong effeth@ulfidecomponenin

the alteration phase assemblage and potentially on corrosion mechaflEms somewhat
similar to the case of copper corrosimd the formation of chalcoci{€wS; see Part Il of this
report) Another important issue in wastanistercorrosia is the fate of E{g) and its impact on
02 fluxes as result of aqueous chemical reactions and fluid transport at theetklyinterface.
This was noted by Wilson et al. (2015) whmréi>(g) being not well constrained in reactive
transport model scenasd thusimposesmportant uncertaimgsin the chemical interactions at
the claymetal interface.



Tablel Properties and dimensions of EBS components for the 1D PFLOTRAN simulation.

. . . . Particle Thermal
Thlz:rl:]?ess Poz_c;sny Perr(nn?Z:;lblllty Tort(Lf)osny Density Conductivity Remarks
(kg/m?®)  (Dry) (W/m K)
Waste Form 0.475 0.3 1.0E22 0.3 8720 11 Assumed to be inert
Metal Canister 0.1 0.001 1.0E22 0.001 7850 46 Stainless steel overpacl
Inner-Clay 1.24 0.3 1.0E17 03 2700 17 Bentonite + Quartz
Barrier
OuterClay 1.24 0.2 1.0E20 0.2 2700 13 Bentonite
Barrier
Cement Liner 0.75 0.15 1.0E17 0.15 2700 1.7 Cement + aggregate
ClayRock 9.2 0.12 5.0620 0.12 2700 17 Based on argilite
properties
Table2 Initial volume fractions inputs for the 1D PFLOTRAN simulagon
Smectite lllite Quartz - Fe . . S . i Monosulfo
(MX80) (IMt2) (alpha) Uraninite (element) Pyrite  Calcite Siderite CSH(1.6) Portlandite Ettringite aluminate Gypsum Remarks
Waste Assumed to
- - - 0.7 - - - - - - - - - !
Form be inert
Metal Fe metal in
Canister . . . . 0.999 . . B . B B ) . the model
InnerClay —— 5g - 0.14 - - 0.004  0.003 - - - - - 0003 ~ Bentonite+
Barrier Quartz
OuterClay 4 79 - - - - 0.004  0.003 - - - - - 0.003 Bentonite
Barrier
Cement Cement +
Liner - - - - - - 0.693 - 0.06 0.062 0.033 0.002 - calcite
aggregate
ClayRock  0.06 043 024 - - 001 0139  0.001 - - - - - Opalinus
clay rock




Table3 Initial molal concentration of aqueous components for each barrier zone in the PFLOTRAN input card.

Na* K* Ca™ Mg** HaSiOs(aq) — AlI*** Fe™ Ut Cl SQu~ HCOs pH Remarks
Waste Form 1.0e07 1.0E08 1.0807 1.0807 5.0E06 6.0E08 5.0E15 trace 1.0E07 1.0807 1.0E05 7.51 Assumed to be inert
Metal Canister 1.0E07 1.0808 1.0E07 1.0E07 5.0E06 6.0E07 5.0805 trace 1.0807 1.0E07 1.0E05 7.51 Stainless steel overpack
InnerCla FEBEX pore water;
Barriery 13E-01 1.7E-03 2.2E-02 2.30E-02 1.1E-04 6.0E07 5.0E06 trace 1.6E-01 1.0E05 4.1E-04 7.72 HaSiOs(aq) in equilibrium
with Quartz
.
OuterClay ) 3p01  17E03 22E02 230E02 11E04 6.0E07 5.0E07 trace 16E01 10E05 41E04 7.72 ' COCX porewaterca in
Barrier equilibrium with calcite
Cement Liner 1.0605 1.0E08 202(5 1.0E04 6.0503 6.0E07 5.0E07 trace 1.0805 1.0809 1.0807? 112 Cement + calcite aggregatt
Based on Turrero et al.
Clay Rock 0.261 0.0027 0.0201 0.0165 2.95E04 6E-07 2.3605 trace 0.332 1.0807 1.0E06 7.6 (2006) for Opalinus Clay

pore water

@ Constrained by equilibrium with respect@&H(1.6) ® Constrained by equilibrium with respect to calckEBEX pore watemajor ion composition aftéfernandez et al. (2001).

Table4 Kinetic rates angdpecificsurface areas of mineral phaggese text)

Dissolution Rate

Specific

Mineral Phase Surface Area Source Remarks
(mol/ n? s) (mé/m?d)
Smectite(MX80) 8.0E14 1 Marty et al. (2009) -
lllite(IMt2) 1.585E15 1 Kdhler et al.(2003 pH~7
Quartz(alpha) 1.99E14 1 Rimstidt and Barnes (1980) -

Uraninite - 1 - Assumed unreactive
Fe(element) 2.232E12 1 Marty et al. (2010) Rate constant for steel
Pyrite 2.884E11 1 Williamson and Rimstidt (1994) pH(}7'5' 7.24E7 molal

issolvedoxygen
Calcite 1.778E05 1 Pokrovsky et al. (2009) -
Siderite 1.007E09 1 Golubev et al. (2009) pH~7
CSH(1.6) 2.75E12 1 Baur et al. (2004) pH range 1112
Portlandite 5E-04 1 Giles et al. (1993) Transportindependent rate
. . Unity surface arasfor all phases
Ettringite 1.12E12 llg%g“((cpg%)) Baur et al. (2004) Except for cement (cem.) amthy
’ rock (Arg.)i see text
Monosulfoaluminate 1.12E12 1 - Sames as ettringite
Gypsum 1.3d3 1 Jeschke et al. (2001) -




Diffusive transport in bentonite is still a subject of debate given the influence of clay interlayers
and the description of porosity particularly in the compacted state (Wersin et gl. E0t5his
reason, a much simpler form of diffusive flux is adapfocusing on assessing the thermal effect
on reactivetransportin these simulationshé diffusive flux in PFLOTRAN ishendefined
according to porosity, saturation, reference diffusivity, and tortufisititner et al., 20183

Fi: fSDt D (1)

where F; is the diffusive flux of the solute constituentfi,stands for porosity,S refers to

saturation, represents tortuosity, D denotes the diffusion/dispersion coefficient, and C
symbolizes solute concentration. Tortuosity in each zone is assumed to be equagity p

foll owing Archi eds L 8oudreaiu (1996cdmpaeed ®riupsitporesityt  n
data for sedimentary environments along with formulations to represent torpioisity
relations including Ar chitedas Bdudeau (199p@onds i der
that Archiebs Law with n = 2. ltettuopityporesityd es a
relation. All media domains are fully saturatéthe diffusion coefficient is set ®.0E-13 m?%/s

to be consistent with the range of effective diffusion coefficient values adopted in the study of
Kosakowski and Berner (20L3Although this value may seem to be on the lower end,
diffusivities for compacted clayich barrier material and clay rock can be as low &S d/s.
Sensitvity analyses on diffusion coefficients up-18'? m?/s resulted in stable code runs with
thecurrent inputand material buildupPorosities are updated in the siatidns according to

the volume fraction of minerals and their dissolution/precipitation rates.

® Observation Points

e Argillite Rock

0475m 01m 124m 1.24m 0.75m >>10m  (RED Font: Domains Considered)

Figure2. Schematic representation and dimensional characteristics of the 1D reactbport
simulation domain including the EBS and argillite ro¢kteractions with waste are not considered in this
study.Green dotsndicateobservation points of code ralataoutputs presented subsequent figures.

Mineral volume fractions of reactant miner@lsble2) were defined consistent with porosities
listed in Tablel. Thespecificsurface areas of all constituent minerals are all set to exitypt

for ettringite in the cement and clay rock phasHEse reason fotreating specific surfaceseas
differently for ettringite has to do witsimulationstablity during heating. Assuming unity
surface areas amaodeling assumption deviates from other reaetigsasport modeling studies
but it allows for simpler evaluation oiinsulation outputs. PFLOTRAN updatsarface area of
minerals as a result of minewiksolution and precipitation. This is capturedhia code runby
changes in mineral volume fractions and hence porosity. Other modeling studies such as that of
Marty et al. (2009evaluated modeling sensitivitiesgpecificsurface areas. Given the range of
surface areas adopted in & transportsimulationstudies, it appears that these are mostly
based on modeler choice built on literature vahresstimates ofpecific and/or geometric
mineralsurface areas.
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Sensitivity analyses were conducted with regardgpgzificsurface agas of pyrite given its

strong effect on pHThese sensitivities were also analyzed for ettringite in the cement liner and
clay rock zones due to stability issues on simuladiaringthe heating periodn the FEBEX

pore water casespecificsurface aras were set in the order of <1 reduce the effectsn pH

which can be significant even when using relatively small pyrite volume fractions. According to
Cheshire et al. (20)4the drop in pH as a result of pyrite degapsition is ~2 pH unitbased on

clay hydrothermal experiments. In the cases for the FEBEX pore water chemistry, the drop in
pH was observed but of lesser magnitude than in the diluted pore water case.

Thermodynamidatafor all mineral phasesereobtaned from the THERMODDEM database
(Blanc et al., 201;2Blanc et al., 2006 This database contains a comprehensive set of relevant
mineral solids andcqueous species such as smectite {80¥ and illite (IMt2) claysamong other
silicates Many datasets contain logK for reactions extrapolated to elevated temperatures which
is appropriate for these simulatioriss development is borne out from the traceability
requirements demanded by rigorous assessment of data to be used in (geo)chemical modeling of
radioactive waste and engineered barrier materials. THERMODDEM also contains a
comprehensive set of solid phasekevant to cementitious materials such as CSH(1.6),
portlandite, anettringiteamong others. The cement liner composition considerdtge
simulationsapproximates that of ordinary Portland cement (OPC) with ~70% volticaaite
aggregate (see TabD).

The PFLOTRAN simulations were conducted in TH m¢zmipled thermahydrological flow)
assuming full saturatiof.he nonisothermal simulations were conducted usirg@\& decay
heatdatabased on théhermal analysis approably Greenberg et al. ®3). The decay heat
curve is inititally based on 12 UOX PWR assembliith a 50yearstorage. Theresulting
temperatures in the thermal profilerescalel down toproducereasonable peak temperatures
above 100C without compromising code run stabilitf he thermal scatldown was done as to
retain the overalthape of the thermal profilelhe heating period after 50 yeagenerating a
sharp increase in temperature up to ~12&f8 a slow decrease afterwards ttagproaching
nearambient temperaturesgithin a period ofseveral hundredsf years(Figure 3) The sharp
increase in temperature resulted in code stability problems due to convergenceNizsues.
attemps to surpaspeak temperatures above ~125°C failed and this limitation will be
investigatedurtherin FY17 since much higher temperatures at the canister surface need to be
investigated Figure3 show the temperature profiles at different observation pdtigsife2)
from the waste canister surfacethe interface between cement liner @bady rock.

Dissolution rates of mineral solids are listed in TableA linear dissolution rate lawithout
temperature dependenisyassumed for simplicityAdding activation energies for the full set of
minerals is being considered in future simulatioBsveral simulations specifying activations
energies ofew phases were performedth minimal effects on coderun stability. Although the
assumption of igoring temperature dependencies adds taithalationuncertainy, adding il+
constrained values to a rate law would also result in uncertain réssttsuld be noted that
activation energies for some silicate and oxide phases can be estimatedesitionable bounds
but this is not the caserfoertain types of clay or cementitiopbases It is assumed that
precipitation rates are the reverse of dissolution rates given the very limited kinetic data
available. This is consistent with the PFLOTRAN lerpentation of transitiostate theory
(TST) where the equilibrium constant can be defined as the ratio of backward and forward rates.



The dissolution rate for pyrite is obtained fréMilliamson and Rimstidt (1994or a near

neutral pH 7.5. The smectite (M30) dissolution rate is taken frolfarty et al. (200dand it 6 s
based on the work #&mram and Ganor (20905Huertas et al. (20Q.LlandGolubev et al. (2006

The illite dissolution rate for pH~7 is from the experimental worKdlfler et al. (2008 The

aqueous dissolution rate for magnetite is obtained from the electrochemical Wdhitefet al.

(1994 at pH 7. Dissolution rates for calcite and siderite wétained from the studies of

Pokrovsky et al. (200%andGolubev et al. (208), respectively.

The dissolution rate of the CSH phases was obtainedBeum et al. (200¢for pH 1112.
Dissolution rategor ettringite is based on the rates given for ettrinGié€2) inBaur et al.

(2004. The dissolution rate tobermorite(11) is assumed to be equal to that of ettringite. The
dissolution rate of portlandite was obtained frGifes et al. (1998 This rate was retrieved

from spinning disk dissolution experiments for the "reaetiontrolled" or transport
independent rate. The portlandite dissolution rate obtained from this study is orders of
magnitude faster than that adoptedvigrty et al. (2009 ltds also more realistic for a pure
portlandite phase since the spinning disk methodology provides insiglitansport effects on
dissolution rates which in this case are attributed to Ca diffusion through the in{&fl@seet

al., 1993. The dissolution rate of gypsum was taken from the studgsghke et al. (2001
Simulations were conducted up to titeagths of 1,000, 5,000, 10,0G¢hd 20,000 yearsDue

to the length of the simulationenly resultsof up t015,000 years areonsideredceven with the
use multiple processar©bservation points were located at the center of each zone and at
interfaces between EBS material domains.

2.2 Results and Discussion

The code simulations resultsthe first 50 years consistent wigothermalambient temperature
interactions reported idové Coldn et al. (2A6) which include (1yapid increase in pldnd

H4SiO4(aq) concentration in pore water is observed at the interfaces between cement and outer
clay buffer, and between cement and clay racil(2) effects on aqueous speciation hg t

thermal pulsdafter50 yearyimposng sharp changes in the computed pore solution chemistry.
Thisis evidenced byhe combined effects on pH, aqueous speciationiraneral precipitatin

(e.g., gypsum and anhydrite)

At the onset of heating (50 years), the rapiateasen temperatureeaches peak of 125°C
(~100 yearsand a slower decay afterwar@gure 3) At this stage, thirgestporosity
change®occurat the cemerit outerclay interfacewith a small decrease after the peak porosity
increment Theouterclay center region experiences similar changes in porosity.rélagve
porosity enhancement ditet outerclay i cement liner interfacis due to the gypsum to anhydrite
dehydrationOn the other handhé cement clay rockinterfaced o e s n 6 t thistypedof c at e
porositychangegFigure5). The reason for this dissimilaorositybehavioris related to
differentpore solution chemistries where depleta@rCa and S®in clay rock pore water
doesndt | eanhddrite lormgtipm Bhe FEBEKentonite cotains ~92% Gdearing
smectite withpore solutiondiavinghigher concentrations of Ca and 8an those of the clay
rock. SOy~ concentration in the cement region needed to be inititally constrained in equilibrium
with respect to gypsunof code run stdlity reasons As shown inFigure 4 The C&*
concentrations drop consistently for innand outerclay center regions as well as the interface
of cement liner interfaces with outelay and tay rock regionsln the case of cement liner
interfacial regims, this is due gypsum precipitatidfigure 4also shows th&80;~ concetration
profiles mapping a similar relationship in the same regions.
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Thecapturedphase transformation reactiongliis rapidtemperature increaseiraportant for
thermally-driven hydratiordehydration reactions that can contributsitmificantchanges in
permeabilityporosity This is reflectedy a rapid drop in gypsum and the nsanultaneous
increase in anhydriteolume fractiongFigure &). This transformation occurs at a temperature
of ~44°Cwhere theoveralldehydration reaction produces a slight increase in pordsgyre

5b). As mentioned previouslyjraulation stabilityduring the heat pulsgas also affected ke
formationof ettringite at thecement lineinterface regions Ettringite formation is consistent
with the reaction of CaS{phases in the presence of &al Alas described in the cement
literature.This outlines the importance of &4 and their equilibria in reactive systems
particularly at elevated temperatur8&able simulatioswere attained by reducing specific
surface areas for enttringit@lso, sensitivity analysewith respect to the inclusion/suppression
of other cementitiouphasesvere conducted to search for additional dependencies on cement
phase assemblage and code run stability

Porosity reduction as a result@fpsum formation islwserved with the temperature decreiase

the outerclayi cement interfacand the outeclay center regions hetiming of such change

differ due to their spatial locatiomgth respect to temperatur®verall, he volume fractions of
precipitated minerals were too small as to generate any significant reduction in pdrbsity.
volume dfference between gypsum and anhydrite is ~60% which can be significant depending
on the relative amount of these phagesticulaty when they are common to cementitious
materials. These volume changes can induce mechanical efféetsehydration/dehydation
reactims canalsoinfluence HO transport in the EBSFuture work will assesthe aspect of
porositychangesn more detaifrom the standpoint dhe chemicalcontributions due to
dissolution/precipitatiomnd hydration/dehydration reactions

140 T
Location

Temperature [C] overpack_region_center (41) (0.527 0.5 0.5)

120} Temperature [C] clay_inner_region_center (93) (1.202 0.5 0.5)

Temperature [C] clay_outer_region_center (187) (2.424 0.5 0.5)

Temperature [C] clay_west _side_of cement (235) (3.048 0.5 0.5)

Temperature [C] clayRock_east_side_of_cement (207) (3.854 0.5 0.5)

Temperature(®C)

20
0

500 1000 1500 2000
time (years)

Figure3. Profile oftemperaturevs. time (up to 1,000 year&)r the reactive transport calculatiookthe
multi-layered EBS. The number triplet in the second set parentheses in the legend refers to the
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observation location (x, y, z) distancartingfrom the waste leftmost coordina#e 50-year storagéime
prior to the thermal load
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0.035 } " Total Ca++ [M] overpack_region_center (41} (0.527 0.5 0.5} J
T Total Ca++ [M] clay_inner region center (93) (1202 0.5 0.5)
0.030 L T Total Ca++ [M] clay_outer_region_center (187) (2.424 0.5 0.5)
" Total Ca#+ [M] clay_west_side_of_cement (235] (3.048 0.5 0.5)

0.025 | —  Total Ca++ [M] cement_center_region (264) (3.425 0.5 0.5) 1
= Total Ca++ [M] clayRock east side of cement (297) (3.854 0.5 0.5)
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Figure 4. C& and SQ" concentration profile as a function of tim#or various regionsNotice the effect
of the heat pulse in the time range afteryg@rs.
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Figure5. Profile of porosity vs. time of the reactive transport calculations for the-laystied EBSat

the identified observation pointg¢a) showsthe longest simulation time period up to 15,000 ye@@)s

shows an enlarged view (up to 2,000 years) to outline the largest change in pBoskity
increase/decrease is more marked at the interfaces but their overall magnitude is relatively minimal in
these simulations (see text).
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Figure 6 Volume fraction of gypsum, anhydrite, portlandite, and attriregidifferent time ranges.
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